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ABSTRACT

The postbuckling failure of square composite plates with central holes is analyzed nu-
merically and experimentally. The particular plates studied have stacking sequences of
[ + 45/0/90%:s, [ + 45/0;]es. [ + 45/0s]s, and [ + 45]ss. A simple plate geometry, one with a hole
diameter to plate width ratio of 0.3 , is considered. Failure load, failure mode, and failure lo-
cations are predicted numerically by using the finite-element method. The predictions are
compared with experimental results. In the experiments in order to be accomodated by the
test fixture it is necessary for the plates to be slightly larger than the analysis region, ex-
tending somewhat beyond the supports. The region outside the supports is inciuded in the
numerical study. It is shown that not considering these regions can lead to erroneous nu-
merical predictions. In numerical failure analysis the interlaminar shear stresses, as well as
the inplane stresses, are taken into account. By comparing the interlaminar shear stress
calculations from the finite-element method with analytical results for simple cases, a solid
foundation for interlaminar shear stress calculation is established. As a failure criterion, the
maximum stress criterion is used. A special test fixture was designed for loading the plates.
In the experiments, strain gauges, linear variable displacement transducers (LVDT’s), and the
shadow moire and acoustic emission tests are used to monitor plate response. An issue ad-
dressed in the study is the possible mode shape change of the plate during loading. To ac-
count for the fact that plates can experience mode shape change, two deformation
configurations are considered. One configuration assumes the plate responds with one half-

wave in the loading direction and the other configuration assumes the plate responds with two



half-waves in the loading direction. Failure predictions are made for each configuration. No
attempt is made to predict the configuration change. However, it is predicted that the first
three laminates fail due to excessive stresses in the fiber direction and, more importantly, that
the load level is independent of whether the laminate is deformed in the one half-wave con-
figuration or the two half-wave configuration. The location of failure does depend on the de-
formed configuration. It is predicted that the fourth laminate fails due to excessive inplane
shear stress. Interlaminar shear failure is not predicted for any laminate. For the first two
laminates the experimental observations correlated well with the predictions. In the exper-
iments the third laminate failed along the side support due to interlaminar shear. The 12
clustered 0° layers resulted in very low interlaminar shear strength Sz. The fourth laminate
failed due to inplane shear in the location predicted. However, material softening resulted in

an actual failure load quite different from the predicted value.
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1.0 Introduction

1.1 Overview

Since plates with circular holes and other openings are extensively used as
structural members in aircraft design, the buckling and postbuckling behavior of such
plates has received much attention. Much of the work done in this area has occurred
since the mid-1940’s. Owing to the abundant accumulation of information and
understanding of the mechanical behavior of isotropic plates, including plates with
holes, isotropic plates are often designed to operate in the postbuckling range. As
an example, fuselage panels are frequently designed to sustain loads of three or four

times the buckling load [1]. This results in a great benefit of weight savings.

With the development of advanced composite materials, the potential application
of composite materials to aircraft design has increased rapidly. Consequently, the
mechanical behavior of composite plates in the buckling and postbuckling range of

loading has become a topic of great interest. As the postbuckling response of com-
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posite plates is not yet fully understood, the initial buckling load is usually considered
as the ultimate load in composite material applications. For increased efficiency,
however, operation in the postbuckling range is important and, as a result, many in-
vestigators are conducting research regarding the postbuckling behavior of compos-
ite plates for various geometries, loadings, and support conditions. Recent
developments [2] show that even composite plates with large holes have load bear-

ing capability beyond the buckling load. The key issue is determining failure load

levels in the postbuckling range. Failure in these situations involves a coupling of

structural response and material failure. It is a complex topic and because of i, the
failure of postbuckled composite plates with holes is not yet fully understood. The
present study is devoted to increasing the understanding of the failure of composite
plates with holes loaded in the postbuckling range of response. To follow is a review
of some of the literature felt to be relevant to the topic studied. Cited are buckling
and postbuckling studies of plates with holes, and postbuckling failure studies of
composite plates. After the review of the literature, the specific problem addressed

in this study are described.

1.2 Literature Review

Buckling analysis of isotropic plates began with the work of Bryan [3] a century
ago. However, the history of buckling analysis for composite materials does not go
back that far. It began with the analysis for plywood by March [4] in 1942. With the
development of advanced composite materials and increasing need for light-weight

structural members for flight vehicles, scientists and engineers began to study the

Introduction 2



mechanical behavior of composite materials. The history and nature of buckling an-

alyses of composite plates to 1987 are well explained in Leissa’s review paper [5].

1.21 Review of Buckling and Postbuckling of Plates with Holes

Inevitably some plates used as structural members will contain holes. These
holes can be access holes, holes for hardware to pass through, or in the case of
fuselages, windows and doors. In some cases holes are used to reduce the weight
of the structure. When a plate contains a hole, it is well known that the tensile
strength is reduced due to the stress concentration around hole. However, the re-
duction of tensile strength may have little bearing on the buckling behavior of a plate
with a hole. The two problems are quite different. For the buckling problem the
prebuckling stresses must first be found, and then the stability of the plate in the
presence of these prebuckling stresses be studied. The former problem is an inplane
problem, like the tensile problem, and involves inplane stiffnesses. The stability
problem, however, involves out-of-plane effects, in particular, bending stiffnesses.
Thus the mechanics of the buckling problem are much more complicated than the
mechanics of the tensile problem. The study of the buckling of an isotropic flat plate
with a central circular hole began with the work of Levy, Wooley, and Kroli [6]. Fol-
lowing Levy, et al. many investigators studied the stability of plates with central holes
using various methods to find the prebuckling and buckling solutions. The history of
solution techniques and the findings for the stability of plates with holes to 1983 is
explained in detail in the literature review of Nemeth'’s thesis[7]. A brief summary

of Nemeth’s literature review is presented in Table 1-1 [6, 8-20]. In the present review
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of buckling and postbuckling of plates with holes only the papers and reports after
1983 will be explained in detail. Herein, the length of the plate will be denoted as L,
the width W, and the hole diameter D. An important parameter when discussing
plates with holes is the hole diameter to plate width ratio D/W. Another important

parameter is the plate aspect ratio L/W. These notations will be used in this study.

Nemeth [7] investigated the buckling behavior of orthotropic composite plates
with central holes by using Kantorovich’s method in both the prebuckling and
buckling analyses. The loading conditions considered were both uniform stress and
uniform displacement on opposite edges. The adjacent unloaded edges were simply
supported and the loaded edges were simply supported or clamped. In addition to
isotropic and orthotropic plates, quasi-isotropic and symmetric angle-ply plates with
very weak anisotropy were analyzed by neglecting Dy and Dy . From the buckling
equation anisotropic parameters were derived. These parameters were used to de-
termine the degree of anisotropy of the plate. The details of this argument were
published in ref. 21. The results from this approach were compared with finite-
element results. For isotropic plates good correlation with the previous results was
obtained. Laminates with all 90° layers appeared to be the least sensitive to changes
in hole size, support conditions, and loading conditions. As the number of 0° layers
increased, the sensitivity to changes in these variables increased. Quasi-isotropic
plates exhibited buckling behavior similiar to that of isotropic plates. For symmetric
angle-ply plates fiber orientation and type of the loading substantially affected the
buckling behavior. The [( £ 60)s]s and [( £ 45)s]s laminates showed high buckling re-

sistance. No experimental results were reported.
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Table 1-1 Buckling and postbuckiing analysis for plates with holes [7].

{continued)

[15]

year | Investigator | Num./Exp. Remarks or Findings
1947 | Levy, Num. - First study on buckling for a plate with hole
Wooley, - Kirsh solution for prebuckling and
Kroll energy method for buckling
[6] - Monotonic decrease with hole size for simple
support and stress loading
1949 | Kroll Num. - Similar approach to Levy, et al.
[8] - Shear loading is considered
- Buckling load is more sensitive to hole
size than uniaxial loading
1951 | Kumai Num./Exp. - Same approach as above
[9] - w satisfies stress free condition on hole
boundary
- For uniform stress loading simple support and
clamped considered
- Simple support : monotonic decrease
- Clamped : reaches minimum at about D/W = 0.2
then increases
1964 | Schiack Num./Exp. - First study for edge displacement loading
[10] - Rayleigh-Ritz method for prebuckling
and buckling
- Biaxial loading test apparatus designed
- Concluded singular term is not necessary
- Studied up to D/W=0.3
1967 | Yoshiki, Num./Exp. - In addition to size effects of the hole
Fujita, the effect of hole position was examined
Kawamura, - Substantial loss of buckling load is possible
Arai[11] for eccentric hole
1968 | Schlack Num./Exp. - Studied up to D/W=0.7
[12] - Rayleigh-Ritz solution agrees well up
to D/W=0.35
1968 | Kawai, Num. - FEM for prebuckling and Rayleigh-Ritz for
Ohtsubo buckling
[13] - Good agreement with previous experiments
- The role of prebuckling stress distribution
explored
1971 | Yu & Davis - The prebuckiing stress distribution for
[14] plate with smail hole and large hole is
sustantially different
1972 | Martin Num./Exp. - First study on composite plate with hole

- Rayleigh-Ritz method used
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Table 1-1 Buckling and postbuckling analysis for plates with holes [7].

(concluded)

year | Investigator | Num./Exp. Remarks or Findings
1972 | Vann & Vos | Num. - FEM used for isotropic plate
[16] - The interaction between prebuckling stress
distribution and reduction of bending stiffness
due to the presence of hole addressed
- Loss of bending stiffness dominates for
small hole and prebuckling stress
dominates for large hole
- When the aspect ratio is two or greater, the
difference between stress and displacement
loading diminishes
1973 | Yu & Davis | Exp. - Postbuckling, shear buckling, web crippling
[17)
1975 | Ritchie, Num./Exp. - Buckling and postbuckling, isotropic plate
Rhodes FEM for prebuckling and Rayleigh-Ritz
[18] for buckling
- Up to D/W = 0.4 postbuckling prediction
agreed with experiment
1978 | Knauss, Exp. - Buckling , postbuckling, failure study
Starnes, - Aspect ratio 2, D/W up to 0.3
. Henneke - At D/W=0.15-0.2 mode shape changes from
[19] full sine wave to half sine wave
1980 | Proebrazh- - Survey paper for mostly Eastern Europe and
enskii[20] some of America, Western Europe, and Asia
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In 1983 Azizian and Roberts [22] investigated the buckling and elasto-plastic col-
lapse of an isotropic square plate with a hole. The finite-element method was used
for this study. The shape of the hole was either square or circular. The support con-
dition was either simple support or clamped on all four sides. The loading was a
uniform displacement on one edge. There was no difference in the buckling load
between circular and square holes up to D/W = 0.3 for the simply supported case. For
D/W > 0.3 the plate with a square hole exhibited a slightly higher buckling load. For
the clamped case the plate with a square hole showed a higher buckling load re-
gardless of the hole size. In both support cases the decrease in buckling load due
to the holes was very small, and for a large hole the buckling load was even higher
than for the plate without a hole. Even though the buckling load of a plate with large
hole increased, the elasto-plastic collapse load decreased monotonically as the hole
size increased. In addition, there was no difference in collapse load between the
circular and square hole. When the plate was thin, the reduction in collapse load due

to the hole was small. When the plate was thick, the reduction was pronounced.

In 1985 Vandenbrink and Kamat [23] studied the buckling and postbuckling be-
havior of isotropic and laminated composite square plates with central circular holes.
They used three-dimensional finite elements in their analysis. The laminates ana-
lyzed were symmetric angle-ply laminates, ([ + 6]s) , where the fiber angles were
0 = 0°, 30°, 45°, and 60°. They studied initial imperfection sensitivity in the
postbuckling behavior of plates with a central hole. They concluded that these plates
are insensitive to initial imperfection and the postbuckling strength of a plate with a

hole is reduced compared to a corresponding plate without a hole.
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Marshall, Little, and Ei-Tayeby [24] studied the stability of composite panels with
holes by using an expression which had a one-term double cosine and a one-term
exponential for the out-of-plane displacement. They followed a formal energy method
solution procedure. They compared their results with their experimental results and

previously reported results. They obtained good agreement.

In 1986 Nemeth, Stein, and Johnson [25] performed experiments for orthotropic
[Ow]s, [901]s, and [(0/90)s]s plates and compared the buckling loads with those from
Nemeth [7]. In the experimental apparatus the plates were clamped on the loaded
edges and simply supported on the unloaded edges. In all cases the difference be-

tween experiment and analysis was less than 13 %.

Sabir and Chow [26] obtained the solutions for the elastic buckling load of square
plates with eccentrically located holes. Uniaxial, biaxial, and pure shear loading
cases for simply supported and clamped plates were considered. Generally, the
buckling loads decreased with eccentricity for holes larger than D/W=0.2. The re-
duction in the buckling load was more appreciable for clamped plates. The excep-
tional case occurred when the circular hole was within the compression zone of a
plate loaded by a uniform shear. The buckling load in this case increased appreciably

with eccentricity for both simply supported and clamped plates.

Yettram and Brown [27] studied the effect of biaxial loading on the buckling be-
havior of isotropic plates with central holes. Uniform edge stress was applied on all
four edges. The buckling behavior was studied by changing the ratio of the load in the
x direction to the load in the y direction, and the size of the hole. Generally, for all

support conditions the buckling load was sensitive to the hole size when the loads in
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the x direction were opposite in sign to the loads in the y direction. When the loads
were both compressive, the dependence of buckling load on the hole size was not

pronounced.

Marshall, Littie, and El-Tayeby [28] investigated the membrane stress distribution
in the postbuckling range for composite plates with holes. They showed that when
the hole size was small, D/W = 0.2 , the stress concentration effect near the hole
boundary diminished and the areas near the s_upported edges were subjected to
higher stresses. When the hole size was large, D/W = 0.4 , the stress concentration

effect still dominated.

Larsson [29] analyzed the buckling and postbuckling behavior of square plates
having central circular holes by the finite-element method. Both uniaxial and biaxial
compression were considered for various types of boundary conditions. They also

studied an annular plate with a hole.

For a single layer the dependence of buckling load on fiber orientation was in-
vestigated by Turvey and Sadeghpour [30]. They found that the buckling loads of
square carbon-fiber reinforced and glass-fiber reinforced laminates without a hole
decreased monotonically as the fiber angle changed from 0° to 90° with respect to the
loading direction. The loading was a uniform stress loading and the support condi-
tions were both simple and clamped support. The inplane movement on the unloaded
edge was not constrained. When the hole size was D/W = 0.3, the buckling load of the
simply supported plate was not sensitive to the fiber angle change. However, the
buckling load was sensitive to the fiber angle change for the clamped support. For

clamped supports the buckling load also decreased monotonically with fiber angle.
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In 1988 Nemeth [31] reported experiments focused on the buckling behavior of
symmetric angle-ply plates with holes. The results were compared with his numerical
results from ref. 7. He conducted a parametric study by changing the hole size,
loading and support conditions, and the fiber angle of the laminate. For [(£ 15)m]s
laminates, m = 6 , the dependence of buckling load on the aspect ratio, L/W, was
studied for simply supported and clamped conditions. The results indicated that the
buckling load was independent of the support condition when the aspect ratio was

greater than 2.5

In 1989 Lin and Kuo [32] performed several parametric studies for the buckling
behavior of laminated plates with a central hole with a shear deformable finite-
element formulation. They studied the dependence of buckling load on hole size for
uniaxial and biaxial loading, for simple and clamped supports, and for different com-
binations of anti-symmetric cross-ply laminates. They also studied the dependence
of buckling load on the thickness of the plate for different hole sizes. The dependence
on the longitudinal-to-transverse stiffness ratio, and the dependence on the biaxial
loading ratio, were also studied. For anti-symmetric angle-ply plates the dependence

on the fiber orientation was studied for different hole sizes.

Nemeth [2] investigated experimentally the postbuckling behavior of square
composite plates with central holes. For [0y]s, [90:0]s, [(0/90)s]s, [( £ 30)els,
[( + 45)]s, and [( £ 60)s]s laminates with hole sizes from D/W = 0 to 0.6 postbuckling
‘behavior was investigated. Results for aluminium plates were reported also. It was

observed that some piates failed at low load levels. As an example a [90,]s plate
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failed at low loads when the hole sizes were large. However, no plate failed before
the buckling load was reached. This means that even plates with large holes exhibit
some postbuckling strength. Depending on the hole size the postbuckling stiffness
changed. Most of the plates with holes showed smaller postbuckling stiffness than
the plates with no hole. However, some of the highly orthotropic plates with holes
showed higher postbuckling stiffness than the corresponding plate without a hole.

Failure predictions were not part of this study.

Hyer and Lee [33] studied the buckling load using the curvilinear fiber format in
a composite plate with a circular hole. By using the finite-element method and opti-
mization technique they tried to find the curvilinear fiber path which produced the
maximum buckling load. They showed that the buckling load of a composite plate
can be increased by using the curvilinear fiber format instead of the conventional
straight fiber format. They also showed that by combining curvilinear fiber format
layers with the straight fiber layers both the buckling load and tensile failure load can

be increased.

1.2.2 Review of Postbuckling Failure

There are few references in the literature dealing with the postbuckling failure

of composite plates. Starnes and Rouse [34] presented extensive experimental re-

sults for composite plates. All of the plates were rectangular and their aspect ratios,
L/W, ranged from 2.1 to 6.7. Most of the plates were solid, without holes. Some

plates, however, had small circular holes, and some had been subjected to impact

Introduction 1



damage. For a few plates experimental results were compared with numerical re-
sults from a general-purpose FEM code. They found that most of the specimens
failed along a nodal line of the buckling mode in an interlaminar shear failure mode.

Failure predictions were not included.

Gurdal, Haftka, and Starnes [35] studied the effect of slots on the buckling,
postbuckling, and postbuckling failure of laminated plates. Centrally located slots did
not affect the failure loads or the failure modes of the plates. Siots located close to
an unloaded edge of a plate reduced the postbuckling strength of the plate and af-
fected the failure mode. For one slightly offset slot location, interaction of out-of-plane
deformations with the slot tip was observed to affect the failure mode significantly

without affecting the failure load.

Buskell, Davies, and Stevens [36] showed other evidence that in postbuckling the
rectangular plates which had aspect ratios, L/W, of 3 - 6.9 failed at the nodal lines and
interlaminar shear stresses were the governing parameters. They used accoustic
emission tests to monitor the failure development, and with ultrasonic techniques

they observed the development of delamination growth from the unloaded edges.

Noor, Starnes, and Waters [37] published numerical failure analysis results which
were compared with limited experimental data for composite plates of aspect ratio
2.0. All of the plates were solid plates without holes. As a numerical tool a mixed
finite-element formulation was used. The formulation included shear deformation and
each node had 13 degrees of freedom. Up to the buckling load the correlation be-
tween numerical and experimental results was good. For loads beyond that the nu-

merical results overestimated the postbuckling stiffness. The plates of Noor, et al.
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[37], like the plates of Starnes and Rouse [34], failed at the nodal lines in a shear
failure mode. From the numerical results Noor, et. al. [37] found that the shear strain
energy density was maximum at the nodal lines. In their analysis interlaminar shear
stresses were calculated from the three-dimensional equilibrium equations of
elasticity by using the inplane stresses obtained from the finite-element analysis. By
integrating the equilibrium equation in the thickness direction, the interlaminar shear

stresses were calculated.

Shin [38] studied postbuckling failure of solid plates and attempted to find a
weight-saving design by changing the stacking sequence so that the postbuckling
failure load was maximized. He used the maximum strain failure criterion by con-
sidering inplane strains only. The phenomenon of mode shape change has been ob-
served by several investigators [39-42]. Some investigators [43,44] followed Stein’s
approach [39] in considering the mode shape change. Stein’s approach [39] was to
find the load-end shortening relation for successive buckling mode shapes and
superpose them. Then, the broken continuous curve that forms the lower bound en-
velope is assumed to be the load-end shortening relation of the plate. in the
postbuckliing analysis Shin [38] tried to predict mode shape change by examining the
energy state for several successive mode shapes. Shin claimed that mode shape
change occurs at the point where the energy level crosses, instead of at the crossing

point of the load-end shortening relation.

Engelstad, Reddy, and Knight [45] studied postbuckling failure numerically. They
used a first-order shear deformabie degenerated shell finite-element theory to predict

the postbuckling response and failure. By applying a progressive damage failure
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mechanism and comparing with Starnes and Rouse’s experimental results [34], they

obtained good agreement in failure load, failure mode, and failure location.

1.3 Problem Studied

1.3.1 Description of Problem

The plate geometry, nomenclature, and a description of the problem studied are
shown in Fig 1-1. The coordinate system used in the study is illustrated in the figure.
The origin of the coordinates is at the center of the hole and the x axis is vertical. The
positive z axis is out of the plane of the figure. The top edge and the bottom edge
are clamped and the two side edges are simply supported. The top edge is loaded
by a known uniform inplane displacement denoted as u. The bottom edge is re-
strained to have zero displacement in the x direction. In numerical simulation the in-
‘plane displacement in transverse direction is not restrained on both the simply
supported and clamped edges. Figure 1-1 illustrates an important aspect of the
problem. Specifically, in the experimental phase that accompanies the numerical
analysis, the actual width of the plate, b, is wider than the distance between the
simple supports, and the actual length of the plate, a, is longer than the distance be-
tween the clamped supports. The width and length of the plate between the supports
are denoted as W and L, respectively. The portions of the plate outside the dimen-
sions W and L are necessary from the experimental point of view. To clamp the top

and bottom edges part of the plate must be within the clamps. The clamps extend
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inward some distance, yet the known inplane displacement, u, is applied at the outer
most edge of the upper clamp, and the zero inplane displacement is enforced at the
outermost edge of the lower clamp. Likewise, when the plate deflects out-of-plane
due to buckling the simply supported edges move inward. Therefore, the plate must
be wider than the distance between supports to accommodate this narrowing, or the
plate will not stay in the fixture. In the experimental set-up knife edges are used to
simulate simple supports. The dotted lines in Fig. 1-1 indicate the lines of support
provided by the knife edges and clamped supports. The hole diameter is given by D
and the hole is centrally located. The ratio of hole diameter to plate width is again
given by D/W and attention must be given to the definition of W, as opposed to b, in

Fig. 1-1.

With the problem described, the statement of the goal of the work is simple:

Determine what level of inplane load (or inplane displacement u) at the clamped

boundaries causes the plate to fail. Inherent in this is : (1) the definition of failure and

(2) the determination of the location of the failure and the mode of failure.

1.3.2 Approach

The approach used to study postbuckling failure involves both analysis in the
form of numerical predictions, and experiments. To put the postbuckling analysis into
context, the buckling problem is studied first. Then the postbuckling response, or

- more accurately stated, the geometrically nonlinear response, is computed
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The numerical analysis for determining the buckling loads uses a mixed-
formulation finite-element method following Reddy [46]. The analysis for studying
response in the postbuckling range relies on a shear-deformable finite-element for-
mulation following Reddy and Chao [47]. Imperfections in the plates in the form of
initial out-of-plane deformations are being included. The inclusion of imperfections
actually precludes the plate from exhibiting ideal postbuckling response. Thus, the
study of postbuckling is done using a geometrically nonlinear analysis which predicts
out-of-plane deformation response for even small inplane loads. Since the emphasis
is on material failure, the calculation of stresses is included in the geometrically
nonlinear analysis. Inplane stresses are computed directly from the analysis. The
interlaminar stresses are calculated by integrating the three-dimensional equilibrium
equations of elasticity in the thickness direction. Failure is predicted by using the

maximum stress failure criterion.

The actual responses of the plates are studied by using a specially built fixture
designed to uniformly displace the top edge of the plate. The fixture is used within
a displacement-controlled Tinius-Olsen load frame. Two linear variable displacement
transducers (LVDT’s) are used to measure the downward motion of the top edge. The
load required to do this is measured with the load cell installed in the load frame.
Hence load vs. end shortening relations from the experiment can be compared with
similar data from the numerical analysis. The out-of-plane displacement near the
center of the plates is measured with a third LVDT. This response can be compared
with numerical prediction. Strain gauges at specific locations are used to measure
the uniformity of the response and bending effects. The shadow moire method is

used to provide a whole-field picture of the out-of-plane displacements. These
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whole-field measurements are compared with contour plots generated by the nu-

merical analysis.

The issue of failure, the prime focus of the work, is studied primarily by visual
inspection, and by considering the response of the plate as measured by the strain
gauges and LVDT’s. However, there was an attempt to study failure using acoustic
emission. This approach was partially successful in detecting the onset of failure.
The failure load, mode, and location, as determined by the instrumentation and by

visual inspection, respectively, are correlated with predictions.

The plates actually considered are fabricated from AS4/3502, a graphite-epoxy
material. The plates are a=11 in. by b=11 in. square with 3 in. diameter hole. The
distance between the simple supports is 10 in. and the distance between the inner
edges of the clamped supports is 10 in.. Thus one-half inch on all four sides is used
for enforcing the support conditions, and D/W =0.3. Four laminates are considered.
The laminates are [ + 45/0/90),s, [ £ 45/0:0es, [ + 45/06]s, and [ + 45]s. All laminates
are 16 layers. The first laminate represents a conventional design. The second lami-
nate is also common and represents a departure from the quasi-isotropic nature of
the first laminate. There is a preferred direction with the second laminate. The third
laminate has a preferred direction, and represents, perhaps, an extreme case. The

fourth laminate has no 0° layers and represents a laminate often studied.

To follow are descriptions of each chapter of this study. The next chapter ad-
dresses the issue of buckling. The finite-element formulation used is briefly over-

viewed and the predicted buckling characteristics of the laminates considered in the
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experiments are discussed. For contrast, the case of plates with no holes is exam-

ined. Buckling loads and accompanying mode shapes are presented.

Chapter 3 addresses the issue of postbuckling response. Since plates generally
exhibit imperfections in the form of initial out-of-plane displacements, the chapter
actually addresses the geometrically nonlinear response of plates which exhibit an
initial out-of-plane deflection. The finite-element formulation to solve the governing
equations is explained. The results from the formulation are compared with results
from the general purpose code ABAQUS [48]. The postbuckling response of the four
laminates with and without holes are studied using the formulation developed. The
influence of the plate extensions outside the analysis region is considered in this

chapter.

Interlaminar stress calculations are addressed in chapter 4. The formulation for
computing the stresses is presented. This formulation is based on integrating the
equations of equilibrium from the theory of elasticity through the thickness. Since the
finite-element analysis is an approximation, the interlaminar stress calculation is
compared with other analyses to validate the numbers. After the validation
interlaminar stresses in the plates in this study are examined. The stresses are
computed at several locations along the net-section for the case of the plate
postbuckling with two half-waves in the loading direction. Stresses at the hole edge,
partway between the hole edge and support, and inside and outside the simple sup-

ports are considered.

Chapter 5 addresses the primary focus of this study, namely, the analysis of fail-

ure. The maximum stress failure criterion is used on a layer-by-layer basis to study
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failure. The failure load, failure mode, and failure location for each of the plates
studied, both with and without holes, are predicted. A so-called damage accumulation
scenario is depicted for each plate. Because of the aforementioned mode shape
change, the failure analysis considers failure scenarios for both the one haif-wave

and two half-wave configurations of deformation in the loaded direction.

Chapter 6 describes the test fixture and experimental set-up. Detail drawings of
each part of the fixture are provided. The test procedures and the layout of the

equipment are explained in this chapter.

Experimental results and the comparison of experimental results with numerical
results are presented in chapter 7. For each laminate the load vs. deflection relations,
load vs. strain relations, shadow moire results, failure, and acoustic emission results
are discussed. For the [ + 45/0¢]s laminate, which showed a difference between ex-
perimental results and numerical predictions, a re-examination of postbuckling failure
is attempted, by revising the interlaminar shear strength to take into account the layer

clustering effect.

Chapter 8 provides concluding comments and recommendations for future re-

search.
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2.0 Buckling Finite-Element Formulation

2.1 Governing Equations

In this chapter the buckling analysis using a finite-element method based on a
mixed formulation will be explained. The formuiation used in this chapter follows

reference [46). The basic equations used in this mixed finite-element formulation are

the stability equation,

52Mx azMxy 62My Fw w Pw
o +2 xoy | o2 +4 (Mo —ax_2'+"2o a_y{+2"603x—a‘;)=0, (2.1)

and the moment-curvature relations,

_ o*w o*w 8w
Mx"‘ (D‘H 6x2 +P12 ayg +2D16 axay )v

B o*w *w *w
My— (D12 ax2 +D22 ay2 +2D26 aX ay ), (2.2)
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Recall, the coordinate system used was illustrated in Fig. 1-1. Here M, M, and M,y

are moment resultants defined by

L L
2 2

h
2
MX=J zo,dz, My:j Zo,dz, Mxy=J. Z 14, dz, (2.3)
- —h —h

2

where h is the laminate thickness. The symbol A is the buckling parameter which is

defined as

1= = = : (2.4)

where N, N, and N, are the inplane force resultants. These are defined by

h
2
y f_h o, 0z, Ny = J , Tyy 02. (2.5)

2 2

2

n
2

XZ
Il
o
l\)||3 N
><q
]
Z
]

The quantities n, N0, and ng are the inplane force resultants due to a unit load applied
on the edge of the plate. Interpreted differently, nu ns and ne are the prebuckling
force resultants due to a unit applied load. The meaning of unit load is different for
a uniform stress loading than it is for a uniform displacement loading. This difference
in meaning will be explained in the numerical procedure section of this chapter. The
quantity w is the out-of-plane displacement. The quantities D; are bending stifiness

coefficients which are defined as
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h
2 ,—
D= _[ hzzQ,jdz. (2.6)
kR
where @, is the transformed reduced stiffness matrix. To facilitate the derivation of

the variational form, the three moment-curvature relations are expressed in the al-

ternative form as

BW. _ _ (B, Mg+ Dg M, + Dig My,)
e = — (D14 My + D1y My + D1 M,y ),
W _ (B M, + D,y M, + Dy M 2.7)
% = — (Dyg My + Dy My + Dy Myy), @
5w ~ - —

235 ay = — (D16 My + Dpg My + Dgs Myy),

where

Dyy Dy Dig Di1 Dyp Dyg | -

Diy Dy Dy |=|Diz Dy Dy |- (2.8)

Dis Dy Dgs Dig Dy Des

The variational form of egs. (2.1) and (2.7) can be established by using the inverse

procedure of deriving the governing equations. This procedure appears as

M M M
5J=”6w X +2 Y -
dx xdy — gy?

0w w 0w
+A(n1o aX2 +n20 ay2 +2n60 Ox ay ) dXdy
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”(SM { + (Dyy My + Dyp My + Dig ,y)} dxdy
JJ&M { + (D12 M + D22 M + D26 xy)} dXdy

J‘J.(SMX},{ + (D16 M + Dzs M + DSS xy)} dXdy.

Using integration by parts and rearranging the terms leads to

5J =6 % f J {Dy1M2 + DyM? + DesMz, + 2D1,M M,

+ 2D6M M, + 2D,6M M, Jdxdy ]

—

ow [ oM, M, ow [ My M,
=9 IH ax( ax T oy )ty \ o Ty ) (Y

L

2 2
A ow ow ow \( ow
+ 6 ) J.J‘{n")( Ix ) + n20< ay > + 2"50( Ox )( ay )}dXdy

aw ow ow ow
+6L.[{Q,,w+M, i Nt My—— dy ny+Mxy< Y By 3y n)}ds ,

where %, and 7, are direction cosines, and Q, is defined as

dw ow M,  OMy,
Q,= (N R kb v el

dw ow oM,, M,
+<ny ox + Ny dy + Ox + 3y Ny

(2.9)

(2.10)

(2.11)

The direction cosines, force resultants, and moment resultants are shown in Fig. 2-1.

Therefore, the variational functional can be expressed as
Jw, M, M, M,,)

117 p2 4 B M2 o D2 ) ) D.
= J J.? {D11Mx + DypM,, + DggMy, + 2D1,M M, + 2D16M M, + ZDstnyy}dxdy
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Fig. 21 Force resultants, moment resultants, and direction cosines.
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6w 6M aMxy ow , My
J:[ 3 )+ 6y( X + 3 ) p dxdy
ow ? dw dw
ff nw 6 +n20 3y + 2ngy ax 9y }dxdy (2.12)

d 0 0 5
J\{Mx aw N+ M,y aW 7ly+Mxy( a:: Ny + Y ’7x)+Qn }

Interpolating the variables w, M, M, and M,, in terms of nodal values of these vari-
ables, and constructing algebraic equations, leads to an eigenvalue problem which
will be explained in the following section. From the above procedure to derive a

functional it can be observed that the essential variables are

w, M, M, M,, (2.13)
and the natural variables are
ow_ 6w Oow_ aw
Qn, 5y o ay Rl + - nx) (2.14)

Note that the natural variables involving the bending moments in the displacement

formulation become the essential variables in the mixed formulation.
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2.2 Finite-Element Formulation

The quantities w, M, M, M, can be interpolated by expressions of the form

n n n n
W= W, My= ) biMy My= ) dMy My=D My (2.15)
j=1 J=1 j=1 j=1

where ¢, are appropriate interpolation functions, and w; , M., M, , and M,,, are nodal
values of out-of-plane displacement and moment resultants to be solved for. These
constants are the nodal values of w, M,, M,, M,,, respectively. By substituting eq.
(2.15) into eq. (2.12) and equating the variations of J with respect to

w, My M, M, to zero separately, a matrix equation of the following form is ob-

tained :
Ki' K KSRy w M' 0 0 ofw
K2 KK K| My o o0 0 ofm
k? k2 k@ k*|m, | f fo o o ofm, | (2.18)
Ul i Iy i 4 4
LK,.}“ K K3 Ky My o 0 0 ojm,
where
o, 09
" 12 ! J

g, 0o ¢, 00, o9, 9¢
13 _ i J 14 _ ! J i ]
K J—ay ——ay dxdy, K J( ax dy + 3y ox Ydx dy

Kit = - jﬁH iddxdy,  Kj =- .[512 b1 iy
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ad ol

Ki*=— | Dig & &;dx dy, Ky’ == | Doz & $,0x dy

o] o

Ki'=— | Dy ddxdy,  Ki*=— |Des b ddxdy (2.17)

op, 06, op, 09y op, 90, ¢, 9¢,
M,«}1=J‘[n1°—; ox +n2°79y—17+n6° 6xl dy + 6y, ox ) | dx dy-

As mentioned in the previous section, moments are essential boundary conditions in
this mixed formulation. Therefore these essential boundary conditions must be sat-

isfied exactly. On the hole boundary the moments must satisfy the conditions
M,=0, M,=0, (2.18)

where, as shown in Fig. 2-1, M, is the bending moment in the normal direction on the
hole boundary, and M., is the twisting moment on the hole boundary. However, the
nodal values being solved for are the moments in the x-y coordinate system. In order
to satisfy eq. (2.18) on the hole boundary, M, and M,, need to be expressed in terms
of the moments in the x-y coordinate system. Such an expression can be obtained
from the moment equilibrium equation applied to the differential triangular element

shown in Fig. 2-1. The relations are expressed as follows:
M,,=Mxn;‘:+Mynf,+2Mxynxny
2 .2
Mns=(My_Mx) MNx ’Ty'*'Mxy(’Tx"’Ty)- (2.19)

- Since M, and M., are zero on the hole boundary, from eq. (2.19) the following relations

are valid on the hole boundary :
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M,=()M, M, =——(%—)Mx. (2.20)

Substituting these relations for the nodal values on the hole boundary in eq. (2.15)

satisfies the free-edge condition on the hole boundary.

2.3 Numerical Procedure and Results

As stated earlier, the ni, np and ng in the stability equation, eq. (2.1), are the
prebuckling force resultants which must be calculated before the buckling analysis.
These force resultants are calculated at Gauss points so that they can be used in the
numerical integration procedure used in conjunction with the last of eq. (2.17). The
prebuckling force resultant calculation is a two-dimensional planar analysis. A dis-
cussion of this step is not included here because it can be found in any one of a
number of books discussing finite elements. For example, refer to [48] for more de-

tails on the analysis procedure and the computer program "FEM2D".

For a uniform stress loading if a unit force resultant is applied on the edge, i.e.,
N,=1 on the edge, then the resulting eigenvalue A represents the critical value of
N,. For a uniform displacement loading, an arbitrary but uniform displacement is ap-
plied on the boundary. Then the force resultant distributions in the plate and average
force resultant on the displaced edge are calculated. The average force resultant on

the displaced edge is defined as
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w

—_ 1 2

Ny = —W—.»[—w N,dy, (2.21)
2

where W represents the width of the plate. It needs to be mentioned that if the anal-
ysis includes the region outside the supports, b is used instead of W (refer to Fig. 1-1).
The force resultants within the plate are divided by this average force resultant on the
displaced edge so distributions of the force resultants due to a unit average force
resultant are obtained. These force resultant distributions due to a unit average force
resultant are the nyw, nw and ng in the notation used here and these resultants are
substituted into the last of eq. (2.17). The resulting eigenvalue equation is eq. (2.16).
Again, the resulting eigenvalue 1 represents the critical applied average force re-

sultant that results from a uniformly displaced edge.

For verification of the computer program the buckiing coefficients were com-
pared with those of Nemeth [31] for symmetric [ £ 6]ss angle-ply laminates under a
displacement loaded, clamped boundary condition. When the plate has the Dy and
D components in the bending stiffness matrix, even though the geometry and load-
ing are symmetric with respect to the x and y axes, the out-of-plane deflection is not
symmetric with respect to these axes. In this case a full plate analysis must be used.
Strictly speaking, a quarter-plate analysis is not correct. However, Nemeth [21]
showed that if the anisotropic coefficients defined as

V=—h—', 6=—2-2-6—1— - {(2.22)

A A
(D131 Dzz) 4 (D1 1032) 4
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are less than 0.2, a result very close to a full-plate analysis can be obtained with a
quarter-plate analysis with Dy and Dy set to zero. Nemeth used this approach and
obtained results from Kantorovich’s method. A comparison between Nemeth’s re-
sults and the present analysis is shown in Fig. 2-2. The buckling coefficient in this
comparison is defined as

K= —Eiv—vz—- (2.23)

n*/D11Da2
For fiber angles of 0°, 30°, and 45° and changing D/W from 0.1 to 0.5 the results are
compared. Fig. 2-2 shows that the present analysis is in good agreement with

Nemeth’s result. The present analysis considered one-quarter of the plate and as-

sumed Dy = D;s = 0. Nemeth [31] also assumed Dy = Dy = 0.

Considering the plates in the postbuckling study, for a buckling analysis with the
finite-element method large computer memory capacity is necessary. Inthe buckling
analysis of a plate with a hole the memory size can be a limitation. The lowest
buckling load, and the mode shape corresponding to this load, can generally be ob-
tained with a small number of finite elements. However, it is possible that some of the
other low buckling modes would not be detected with a full-plate analysis when using
a small nhumber of finite elements. In order to avoid this possibility of missing a
buckling mode, yet staying within the limits of the computer capacity, based on
Nemeth’s argument a quarter-plate analysis is used in this study. However, a variety
of boundary conditions, discussed below, must be used to account for the higher
modes. Material properties for AS4/3502 used in the present study are tabulated in
Table 2-1. With these material properties the anisotropic coefficients of the laminates

selected for study, namely [ + 45/0/90],s , [ £ 45/0,)es , [ + 45/0s]s , and [ 4 451« lam-
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Nemeth Present Nemeth Present Nemeth Present
. . deg. 30 45 . 45 .
0deg. Odeg. 30geg. e 45gen. 45geo

16

14

p—ry -
o N

K (Buckling Coefficient)
o]

Fig. 2.2 Comparison with Nemeth’s angle-ply results [31] for displacement loaded, clamped

[ £ 0)ss laminate.
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Table 2.1 Layer material properties of AS4/3502.

= 18500  Msi
E2 1600  Msi
G 12 0.832 Msi
G2 0.332 Msi
Vo 0.350
thickness 0.00531 in.
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inates, are shown in Table 2-2. Since the coefficients are considerably less than 0.2,

a quarter-plate analysis can be used with sufficient accuracy.

For a complete study with a quarter-plate analysis, to examine more than one of
the lower modes, four kinds of boundary conditions must be considered on the x and
y axes. These boundary conditions are explained in Fig. 2-3(a)-(d). The first case is
free on the x axis and free on the y axis. This case produces mode shapes that are
symmetric with respect to both the x and y axes. The second case is free on the x
axis and simply supported on the y axis. This case produces mode shapes that are
symmetric with respect to the x axis and anti-symmetric with respect to the y axis.
The third case is opposite to the second case. The fourth case is simply supported
on both the x and y axes, and this case produces mode shapes that are anti-
symmetric with respect to both the x and y axes. Of course, in all of these cases the

clamped and simply supported edges remain that way.

From all of the buckling loads calculated with the four sets of boundary condi-
tions, the smallest three values are selected for each plate and they are listed in Ta-
ble 2-3 for plates with holes. As can be seen as the number of 0° layers is increased,
the buckling load increases. The [ + 45] lamimate shows the smallest buckling load.
For future use the critical (buckling) force resultants are nondimensionalized in the
form of %‘;’— , where P., is the buckling load ( N, multiplied by load applied length),
E is the equivalent Young’s modulus in the x-direction of the corresponding laminate,

and A is the area of the edge of the laminate where the load is applied. The equiv-

-alent Young’s modulus of each laminate is tabulated in Table 2-4.
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Table 2-2  Anisotropic coefficients for laminates in this study.

Laminate Y 5
[ + 45/0/90];s 0.067 0.073
[ £ 45/0,].s 0.062 0.092
[ + 45/0]5 0.041 0.068
[ +45]s 0.134 0.134
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Table 2-3  Buckling loads of plates with holes.
Laminate Parameter First mode |Second mode Third mode
N 258 424 470
[ 4+ 45/0/90],s
_EEEL 0.000411 0.000676 0.000749
Ne 294 496 497
[ £ 45/0.]s
-E%f‘ 0.000321 0.000541 0.000542
Ne' 318 508 545
[ £ 45/0¢]s
E%ﬂ 0.000245 0.000407 0.000436
NS 240 373 427
[ £45]s
éZAc: 0.000980 0.001523 0.001744

Buckling Finite Element Formulation
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Table 2-4 Equivalent Young’s modulus In x direction for each laminate.

[ + 45/0/90].s 7.381E+06  psi
[ + 45/0,];s 1.078E+07  psi
[ + 45/06]s 1.469E+07  psi

[ +45]s 2.881E+06  pgi
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In conjunction with the buckling loads, the buckling mode shape must be under-
stood. From Fig. 2-4 and Fig. 2-5 it ‘can be seen that for every plate the first mode is
one half-wave in both the x and y directions. For the second mode the [ + 45/0/90]s
and [ + 45]‘5 plates have two half-waves in the x direction and one half-wave in the
y direction. However, for the second mode the [ £ 45/0,)es and [ £ 45/0:]s plates have
one half-wave in the x direction and two half-waves in the y direction. In the third
mode the [ + 45/0/90):s and [ 4 45]«s plates have two half-waves in the y direction and
one half-wave in the x direction, but the [ + 45/0,].s and [ + 45/0¢]s plates have one
half-wave in the y direction and two half-waves in the x direction. It is important to
note from Table 2-3 how close together the second and third mode buckling loads can
be. In an actual experiment it might be impossible to distinguish between these two

modes.

For comparison, the buckling loads of solid plates of the same lamination as the
plates with holes were calculated. The smallest three buckling loads for each plate
are tabulated in Table 2-5, and the buckling mode shapes are shown in Fig. 2-6 and
Fig. 2-7. The buckling loads of solid plates are higher than those of the plates with
holes. All the solid plates have the same mode shapes in the first and second
modes. The first mode shape is one half-wave in both the x and y directions, and the
second mode shape is two half-waves in the x direction and one half-wave in the y
direction. In the third mode the [ + 45/0/90);s and [ * 45]s laminates showed two
half-waves in the x direction and one half-wave in the y direction. The [ £ 45/0.]s and
[ + 45/0s]s plates showed one half-wave in the x direction and two half-waves in the
y direction. For the case of plates without holes the buckling loads of the second and
third modes are far apart. With the buckling analysis established, and numerical re-

sults computed, the next chapter addresses the issue of postbuckling.
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(symmetric)

(symmetric)

First mode

(symmetric)

Second mode

(symmetric)

Third mode

Fig. 2.4 Buckling mode shapes of [ 1 45/0/80);5; and [ 4 45]s plates with holes.
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(symmetric)
(symmetric)

First mode

(antisymmetric)

Second mode

(symmetric)

Third mode

Fig. 2-5 Buckling mode shapes of [ & 45/0,),s and [ £ 45/0;]s plates with holes.
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Table 2-5 Buckling loads of solid plates.
Laminate Parameter First mode Second mode Third mode
NS 293 444 762
[ + 45/0/90],s
.EE;s\z 0.000467 0.000708 0.001215
NS 327 528 888
[ £ 45/0,].s
Tsef 0.000357 0.000576 0.000969
N)c(:r 340 571 841
[ £ 45/0¢]s
TEEAn: 0.000272 0.000457 0.000673
NS 291 405 650
[ +45]s
-,5\9: 0.001188 0.001654 0.002654

Buckling Finite Element Formulation
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First mode

Second mode

Third mode

Fig. 2-6 Buckling mode shapes of solid [ + 45/0/90),s and [ 1 45].s plates.
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(symmetric)

First mode

Second mode

Third mode

Fig. 2.7 Buckling mode shapes of solid [ 1 45/0.}>s and [ + 45/0s]s plates.
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3.0 Nonlinear Plate Bending With Initial

Imperfection

For analysis in the postbuckling range of deflection, a plate bending finite-
element program which includes the influence of geometric nonlinearity is devel-
oped. For an ideal plate the stiffness matrix of the algebraic equations becomes
singular at the buckling load. Therefore, in postbuckling studies numerical difficulties
can occur at load levels near the buckling load. One of the ways to overcome this
singularity problem at the buckling load is to impose a small initial out-of-plane de-
flection on the plate. As plates fabricated to be flat are rarely without an initial out-
of-plane deflection, the inclusion of these effects in the analysis is quite realistic. In

addition, numerical difficulties are avoided. This is the approach taken here.

The basic kinematic equations for plate bending with initial imperfection can be
found in reference [50]. The finite-element formulation procedure for this develop-
ment, in the context of a first-order shear deformation theory, will be explained in the

following sections. The formulation results in a set of nonlinear algebraic equations.
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The resulting nonlinear aigebraic equations are solved by the Newton-Raphson

method. The general features of the Newton-Raphson method will also be explained

in a following section.

3.1 Governing Equations

For a first-order shear deformation theory, the displacement field is assumed to be

of the form
u(x,y,2) = ulx, y) +z Y, y)
Uy, y, 2)=v(x,y) +z ¥,(x,y) (3.1)

us(x, y, z) = w(x, y).

Here u,, u,, U; are the displacements in the x, y, z directions, respectively, u, v, w are
the associated midplane displacements, and ¥, and ¥, are cross-section rotations of
the line elements perpendicular to the midplane in the x-z and y-z planes, respec-

tively. The strains in the plate are expressed as
0

E, =& +2 K2

-0 0

e,=¢,+ 2k,

0 0
yxy = yxy + z ny (32)
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ow
Yxz = WX+W

aw
Vyz=¢y+'5y—-

where the ¢!, ¢ , and y% are the midplane strains, and the k!, x} , and «{, are the
midplane curvatures. By one of the assumptions of plate theory, lengths normal to
the midplane remains unchanged. Therefore the strain in the thickness direction is
zero, i.e., &,=0. The midplane strain-displacement relations and midplane curva-

tures for a plate with an initial imperfection can be written explicitly as

2
_Qu 1 (w9 ow
“=x T2 (6x)+ax ox
v .1 (ow\ 0 3
o_ov 1 (oW — oW
T y+2<6y>+5y dy
o _0u v 9w dw 9 ow  O¢ ow
Vry dy o0x ox dy ox dy dy Ox
0
Ko = aﬁ" (3.3)
o_ Yy
Ky =5
0 a'px 5!,/Iy

Ko =5y T Tax
where the influence of geometric nonlinearities has been included and £ is the initial
out-of-plane imperfection.
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The governing equilibrium equations can be derived by the principle of virtual

work. That principle can be expressed as
A A
0=6U— oW, (3.4)

where U is the internal strain energy and W is the work done by external forces. The
body force terms are neglected in this equation. The variation of the work done by

the external forces is expressed as

+ N, Sug — My -a—(‘;-s-w— + Q,6w)ds, (3.5)

Jow
an

6V0=Jq6wdxdy+."(l,\\l,,éu,,——l\/'\1,,

where I\?,., I(I,,,_ M,,, A;I,,,, and (5,, are the specified applied resultants defined by
h h
A 2 A A 2 A
N, =J t,dz, Nps = j ths 02, (3.6)
=h =h
2 2
h h b
A 2 A A 2 A A 2 A
M,,=J‘ zt,dz, Mns=J z t,sdz, Q,,=J t,z dz.
=h =h =h
2 2

in the above the effect of a transverse load, q, is included for compieteness. Here

A

t f,.,, and f,, are specified normal and tangential stress components, and u, and u,
are normal and tangential components of the midplane displacements on the edge.

Now, including the strain energy term, the principle of virtual work is expressed as

0= j(ox ey + 0, B8, + Ty OVxy + Tz 07z + Tz O¥xg) AV (3.7)

- Jq dw dx dy — JI(\I,, oupdS + ff@,,s dudS
+ J‘A’/\f,, %‘1’- ds + JA?f,,s —5%"- ds — Jén Sw ds.
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To derive the equilibrium equations, in addition to the moment and inplane force re-
sultants defined in eq (2.3) and eq (2.5), respectively, the out-of-plane force resultants

Q. and Q, defined as

h
2
Q= J. 2 dz, Q= J 7, dZ. (3.8)

v

are used. By substituting the strain-displacement relation, eq. (3.3), into the virtual
work statement, eq. (3.7), integrating in the thickness direction, applying integration
by parts, and using the relations
Nn=Nxﬂ§+Nyn§+2nynxny

= (Ny = Ny) 11y + Ny (3 — 73)
M, =M, nx+ M, ny+2Mxy Nx Ny (3.9)
Mas = (My = M) 1, 1y + My, (1 = 1))

and

Up=Uny+vny, Us=—un,+ Vi
U=Uptx—UsNy, V=UsN,+ Uy
Vo=Vl + Uyly ¥s=— ¥y + ¥l
U =VUntx— Vs ¥y=VYnny,+ Vs

9 _. 0 0 9 0 9
on _ ™* ox + 1y oy’ Bs x5y dy My “ax (3.10)
o _. 9 . 0 9 _ _6_+ 0
ox "™ an Mas oy M an Txas

where 7, and 5, are direction cosines as shown in Fig. 2-1, the following form of the

principle of virtual work is obtained:
aN N oN,, ON,
ou dxdy + |ov +—— | dxdy
oy 0x ay
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0Q, 99 5 ow | 8¢ ow | 0¢
+J.5w( x +—6y +—a-; NX( o + = x >+ny dy +—= 3y
0

w ¢ w , 0¢
{ (2 a_) Ny(a—y+-67)}+q>dxdy (3.11)

Jé aM" dx d My dxd
+ | 8y, Ew x dy + ax - Q, ) dxdy
+ Jéun (Np — —N »)dS + jéus $)dS + Ié!/l,, (M, — M,)ds

+ Jé-ﬁs (Mps — Mps)dS + Jéw (@, - Qy)as

Since the variations éu, dv, éw, &y, &y, Ou, ou, 8y, and 8y, are arbitrary, the

equilibrium equations are as follows :

du : %%—+66L;W=0
ov agl;y+%¥-=0
s - a(;ix +aa_?+—;;{Nx(—aa!:—+g—i>+ny(%’—+%>}
+%{N (%‘)’("+%€—>+Ny<%—;‘,’—+%)}+q=0 (3.12)
oy, : 5(;‘:’: +66L;y—0x=0
oy, : a—g:—”—+%—oy=0.

The boundary conditions are :

A

either éu,=0 ,0r N,—N,=0
either dug=0, or Ny — IQ,,S =0
either 6y,=0,0or M,—M,=0 (3.13)

either Y, =0 , or My — Mg =0

Nonlinear Plate Bending With Initial Imperfection 50



either éw=0,or Q,,—(s,,=0

3.2 Finite-Element Formulation

In this work a displacement based finite-element formulation for the governing
equations derived in the previous section is used. The principle of virtual work
statement in the previous section , eq. (3.11), can be expressed in terms of displace-
ments u, v, W, ¥, and ¥, using Hooke’s law and the strain-displacement equations.
Over a typical element the generalized displacement U, where U represents u, v, w,

¥, and ¥, is interpolated spatially by an expression of the form

U= Ugix ). (3.14)
!

where U, is the value of U at node i, ¢; is the finite-element interpolation function at
node i, and r is the number of nodes in the element. For simplicity in this formulation
the same interpolation function is used for each of the five deformations u, v, w, /8
and y,. Substituting the interpolated expression for the displacements into the prin-
ciple of virtual work statement, eq. (3.11), and collecting the terms of 6U; leads to the

following equation for a typical element:
[K°(A)] {4}° = {F}°. (3.15)

Here {A}* is the column vector of the nodal values of the generalized displacements,
[K*(A)] is the matrix of the stiffness coefficients, and {F}¢ is the column vector con-
taining the boundary and transverse force contributions. The notation [Ke(A)] indi-

cates that the stiffness matrix is a function of the nodal values. Thus the probiem is
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nonlinear in the nodal displacements. The assembled finite-element equations are

of the form
[K(A)] {A} = {F}, (3.16)

where [K(A)] is the direct stiffness matrix and {A} is the global solution vector. This
nonlinear set of equations is solved iteratively. Here the Newton-Raphson method is

used, and it is illustrated in the next section.

3.3 Newton-Raphson Method

To solve the system of nonlinear equations, eqg. (3.16), they are transformed into

the form
[K(A")] (6A"} = (R}, (3.17)

where {A’} is the intermediate solution at the r-th iteration and [K"(A")] is the tangent

stiffness matrix which is obtained from the relation

e | _9R)
[K'(A )]—[ (8 ] (3.18)
{ R } is the residual given by
{R} = [K(AN1 {A"} — {F), (3.19)

- and {8A"} is the increment of the solution. The tangent stiffness matrix in eq. (3.18)

is symmetric. The total displacement at the (r + 1)-st iteration becomes
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(A" Y = (A"} + (A} (3.20)

The true solution makes the residual zero, i. e.,

{R}=0. (3.21)

In this implementation iteration is stopped when the following equation is satisfied:

N 2
S lartt - afl
i=1

N 2
ZlA,’I

< EPS, (3.22)

where the value of EPS is 0.01 in most of the work.

3.4 Numerical Results

3.4.1 Verification of Present Analysis

Based on the argument associated with Table 2-2, a quarter-plate model is again
employed in the postbuckling analysis and Dy and Dx are assumed to be zero. A
uniform inplane displacement is applied on one edge. Recall that the displaced edge
and the edge opposite to it are clamped, and the two other edges are simply sup-
ported. For the initial out-of-plane deflection a one-term double cosine function is

used which is of the form
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¢ =wph cos( LL)-(- ) cos( _”M!"l.'_ ), (3.23)

where h is the plate thickness, and L and W are the plate length and width inside the
supports, respectively, as shown in Fig. 1-1. In the above equation, w, is the fraction
of initial out-of-plane deflection with respect to the plate thickness at the center of the
plate. In these results w, was taken to be 0.1. As mentioned previously, the nonlin-
ear simultaneous equations are solved by the Newton-Raphson method, an incre-
mental scheme using the solution pf the previous load step as the initial guess of the

next load step.

For the verification of the computer program, postbuckling results were com-
pared with the widely used commercial computer code ABAQUS [48]. The case of a
solid quasi-isotropic plate, a [ + 45/0/90].s laminate, was considered. The material
properties used in the comparison are given in Table 2-1. The same boundary con-
ditions as in the present study, i.e., clamped on the loaded edge and simply sup-
ported on the other two edges, were applied. The dimensions of the plate were also
10” by 10”. In ABAQUS [48] the initial imperfect out-of-plane deflection was assumed
to be the same as the first buckling mode. This is not quite the same situation as eq.
(3.23), but it is close enough. Fig. 3-1 shows the comparison for the load vs. end
shortening relation, and Fig. 3-2 shows the comparison for the load vs. out-of-plane
deflection relation. The out-of-plane deflection being considered in Fig. 3-2 is the
deflection at the center of the plate. Note that the nondimensionalized load parame-
ter, ?R/T , is the same as in chapter 2. For both the ABAQUS results and the present
results 16 elements were used for a quarter-plate. As can be seen, the comparison

of the present formulation with the commercially available code is quite good. Note
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that the load vs. end shortening relation is almost linear until the buckling load is
reached. After that load level the slope of the load-end shortening relation decreases
sharply. The secondary portion of the relation is associated with the postbuckling
response-of the plate. The load vs. out-of-plane deflection is also nearly linear until
the buckling load is reached. The deflection then increases rapidly with increasing
load, the region of high deflection again being associated with the postbuckling re-

sponse.

3.4.2 The Effect of the Portion of the Plate Outside the Supports

As mentioned earlier, in any real experimental set-up the plate extends outside
the supports. It is physically impossible to perform the experiment any other way.
Thus it is important to know the influence on the plate response of the portions of the
plate beyond the supports, and to determine if they must be included‘ in the analysis
of the plate. Here the effects of the extensions on the postbuckling analysis will be
studied. To that end, the three cases shown in Fig. 3-3 are studied. In Fig. 3-3 the
‘no extension’ case represents the usual numerical analysis where only the region
inside the supports is considered. The ‘simple extension’ case represents the case
where the portion of the plate beyond the simple support is taken into account. The
analysis region is the region of ‘no extension’ plus the region beyond the simple
support. The ‘both extensions’ case represents the condition where the entire region
of the plate is considered. In this case the analysis region is the same as the speci-
men in the test set-up. For each case in Fig. 3-3 the analysis region is enclosed with
a solid line. The postbuckling response for the quasi-isotropic plate with central hole

was examined for the above three cases. Figure 3-4 shows the result of the exten-
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sion study. The load vs. end shortening relations for the three cases are considered.
Note the horizontal axis reflects whether the length within the clamps, L, or the actual
length of the plate, a, is being considered. As can be seen from the figure, there is a
significant difference in postbuckling response between the case of ‘no extension’
and the other two cases. By taking into account the extensions the postbuckling re-
sponse becomes stiffer. There is some difference between the case of 'simple ex-
tension’ and ‘both extensions’. However, there is much more difference between the
case of ‘simple extension’ and ‘no extension’. The case of ‘both extensions’ is

somewhat stiffer than the case of ‘simple extension’. It can be concluded that the

extensions cannot be neglected in postbuckling analysis. In _the subsequent dis-

cussions in this study the actual dimensions_of the test specimen will be analyzed,

i.e,, the case of '‘both extensions’.

3.4.3 Results for Plates With and Without Holes

To provide insight into the types of response that might be expected from the
plates to be tested, the load vs. end shortening relations for the four laminates are
illustrated in Fig. 3-5 - Fig. 3-6. Figure 3-5 shows results for the case of plates with
a hole, D/W = 0.3, while Fig. 3-6 shows results for plates with no hole. In the figures
the load Is again nondimensionalized to be in the form of P/EA. The value of E is
different for each plate, the values having been listed in Table 2-4. The results in Fig.
3-5 - Fig. 3-6 were obtained for the imperfection given in eq. (3.23). Though not ob-
vious from Fig. 3-5, the [+ 45/0s)s laminate is the stiffest, followed by the

[ £ 45/0,):;s, the [+ 45/0/90].s, and then the [ + 45] laminate. To be expected, a
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comparison between Figs. 3-5 and 3-6 shows the plate without a hole to be slightly

stiffer than the counterpart plates with a hole.

The Iéad vs. midplane deflection relations for the same cases are ilustrated in
Figs. 3-7 and 3-8. The resistance to out-of-plane deflections as a function of lami-
nation sequence follows the same pattern as for the end shortening deflections, the
[ + 45/0¢)s being the stiffest. Though the load vs. deflection relations in Figs. 3-7 and
3-8 seem to indicate that certain laminates will reach higher loads than others, the
issue of failure must be superposed on those relations. The key question is at what
load level on the postbuckling portion of the response will failure occur. The calcu-
lation of stresses and the prediction of failure will be discussed in the next two
chapters. However, before those topics are addressed, another issue regarding the

postbuckling response will be discussed. This follows.

3.4.4 Mode Changes During Loading

As was discussed in the introduction, it has often been observed that as lami-
nates are loaded into the postbuckling range, there can be an unexpected and sud-
den change of the postbuckled configuration [38-41]. If the laminate is responding in
the postbuckling range by deflecting in a shape similiar to the first buckling mode,
with a single half-wave in the loading direction, the laminate may suddenly change
to a shape associated with the second or higher buckling mode characterized by
multiple half-waves in the x direction. Whether or not such a mode shape change
occurs is a function of the laminate, the geometry, the boundary conditions, and

though hard to quantify, possibly any eccentricities or imperfections in the loading
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or plate itself. Whether the plate is responding in a shape associated with the first
mode or a shape associated with a higher mode can have a profound effect on the
failure load and failure mode of the plate. Typically, if the plate responds with multi-
ple wavelengths in the loading direction, interlaminar shear may dominate the stress
state. On the other hand, if the plate responds with a single half-wave, inplane
stresses may be important. Figures 3-9 through 3-12 show the load vs. end shorten-
ing responses of the plates in the study assuming the imperfection in the plate is in

the form of two half-waves in the loading direction, i.e.,

& =wph sin( —2-2_9-(-) cos( %— ) (3.24)

For comparision the load vs. end shortening response for each plate with the initial
one half-wave imperfection, eq. (3.23), is also shown. Plates with and without holes
are considered for each laminate. As can be seen, in all cases the load vs. end
shortening relation for the two half-wave case coincides with the one half-wave case
until the load reaches the first buckling load. At loads greater than this level the load
vs. end shortening relation for the one half-wave case turns toward a postbuckling
path, while the two half-wave case continues as an extension of the prebuckling load
vs. end shortening relation. At a load level corresponding to the buckling load of two
half-waves in loading direction, the load vs. end shortening relation of the two half-
wave case then turns toward another postbuckling path. The two postbuckling paths
cross and usually at loads greater than the crossing load a sudden change in config-
uration occurs. It is important to note that the figures with both the one half-wave
imperfection and two half-wave imperfection do not represent the complicated
phenomenom of the sudden change in postbuckled shape. That phenomenon will not

be studied analytically here. There will be no attempts at predicting the load path that
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leads to the plate being in the two half-wave configuration. However, failure in the
postbuckling range due to high interlaminar shear stresses will be studied. That will
be addressed by examining the interlaminar shear stresses when the plate is
postbuckled in the shape associated with the two half-wave configuration in the
loading direction. It should be mentioned that the deflection at the center of the plate
is zero when the plate is responding in the two half-wave configuration. Thus there

are no load vs. out-of-plane deflection relations shown for that case.

With the analysis to predict the geometrically nonlinear response in hand, atten-
tion shifts to the calculation of stresses associated with this response. The calculation
of inplane stresses is trivial and is not discussed explicitly. The calculation of the
interlaminar stresses, however, is more difficult. That is discussed in the next chap-

ter.
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4.0 Calculation of Interlaminar Shear Stresses

4.1 Formulation

Though understanding the deflection response in the postbuckling range of de-
formation is important for the study of failure, it is absolutely essential to understand
the state of stress within the plate. The calculation of the inplane stresses within the
laminate is relatively straightforward. None of these stresses is generally zero. How-
ever, in classical plate theory the out-of-plane shear stresses are zero by the as-
sumption that the line element perpendicular to the midplane surface remains
normal. The out-of-plane normal stress is also assumed to be zero. In a first-order
shear deformation theory the out-of-plane shear stresses are constant through the
thickness, but the out-of-plane normal stress is still assumed to be zero. In reality
there exist out-of-plane stresses that vary from zero to some maximum value as the
thickness of the laminate is traversed. This has been shown by Pagano [51]. Using
an example of cylindrical bending Pagano obtained the distribution of interlaminar

stresses through the thickness by using an elasticity solution. Pagano compared this
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elasticity solution, which involves rigorous mathematical calculations, with another
solution which was obtained from a simpler approach. This simple approach used
the two-dimensional solution obtained from plate theory. By substituting the inplane
stress distribution from the two-dimensional solution into the three-dimensional
elasticity equilibrium equations and integrating these equations through the thick-
ness, the interlaminar stresses were obtained. This simpler approach showed very
good agreement with the elasticity solution. As a result of the calculations these
interlaminar, or out-of-plane, stresses were shown to be small. However, even
though the out-of-plane stresses may be small, the weakness of the material makes
the knowledge of the character of these stresses important. As is well known a
composite material is quite poor in resisting all stresses except for the fiber direction
normal stress. In this chapter general expressions for the interlaminar shear
stresses are developed, the interlaminar stresses being calculated from the inplane
solutions of plate theory. The approach follows that of Pagano. With this approach
the calculation of interlaminar normal stresses involves derivatives of displacements
and rotations that are of a higher order than they are in the calculation of the
interlaminar shear stresses. With the discretized results obtained from the finite-
element solution, it is very difficult to obtain a converged solution for the higher-order
derivatives, and hence a converged solution for the interlaminar normal stress. For-
tunately, in the postbuckling problem there is no transverse load. Therefore it can
be assumed that the interlaminar normal stress is not important. Because of this as-
sumption the interlaminar normal stress is not included in this study. However, there
can still be convergence problems with interlaminar shear stress calculations and

hence convergence must be studied. This will be discussed shortly.
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Excluding the interlaminar normal stress, a;, the two equilibrium equations of

importance are

do, Oty + 0Txz

ox T oy oz

=0 (4.1)

0ty Oo, 01y,

ox +6y+ 0z =0

Since the distribution of g,, g,, and 1., are determined from the two-dimensional sol-
ution to the problem, the unknowns are t, and 7, . They can be found from the in-

tegration of eq. (4.1) with respect to z, i.e.,

aax a‘l‘xy
Ty =— f( x + —5;-) dz + f(x,y) (4.2)

ot do
= (G 2L dz el

where f(x,y) and g(x,y) are unknown functions of x and y, and the definitions of z and
the layer interfaces are illustrated in Fig. 4-1. The key constitutive equation for clas-

sical lamination theory is

-~ - P~ 0 0
Ox Qi Qiz Que Ex +Z Ky
= -~ I~ 0 0
{ay } = Q12 Q22 Qgs {Ey + 2z Ky } (43)
=~ p~ P~ 0 0
Txy Qie @6 Q6 Yxy T Z Kxy

By using the constitutive equation and the strain-displacement relations in the above

equation, performing integration with respect to z on a layer-by-layer basis, and ap-
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plying boundary conditions on the bottom surface and continuity conditions at the
layer interfaces, explicit expressions for interlaminar stresses can be obtained. The

interlaminar shear stresses within the k-th layer are expressed as follows :

Ta=— z {@ﬁ(z Zoi,( } L (4.4)

1=1,26
k—1
. - as,
- Qe(z—2z)+ ) Qslzj+1—2) dy
=126 =1
B K~ 1 ]
1 =k 2 2 Ql (22 2 __6;(?
- Q2" ~=z,) + Q{i(zj+1 - ) E
i=126] 1=1 -
B k=1
1 —K. 2 _2 Al (2 2 _6)(?
- Qez° —z) + QIB(Zj+1 =2 ) dy
1=126| /=1 -
K -1
. - 65?
Ty =— Qslz—z)+ ) Qelzj41—32) ox o)
1=126 I=1
_ - _ e’
- Z {Qgi(z -z)+ ZQ&(Z;M . Zf)} '6_):_
I=1,2,6 j=1
1 o’
- Z { ,6(2 -—zk) + ZQ{G(ZJ +1 7% )} =
i=126] -
i k=1 ]
1 =k, 2 2 Bl (72 2 _ax?
- Q(2° —z}) + Qé/(zj +1—%) dy
=126 /=1 -

Note that for the purpose of the simplification of the equations, the notations for

strains and curvatures are changed in above equations. The quantities €%, &}, &f, «,
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x3, and x§ correspond to &, €, %, k%, k%, and k§, respectively. As mentioned earlier,
the traction-free boundary conditions on the bottom surface and the continuity con-
ditions at the layer interfaces were used in the process of deriving the above
equations. The traction-free boundary condition on the top surface remains redun-
dant. However, the traction-free condition there is automatically satisfied. This can
be shown as follows. The shear stress 1, on the top surface can be obtained by

substituting z = zy,1 and k=N into the above equations. The result of sustitution

appears as
20 e , a2 dc) dxyy
sz="<A11 ax + A5+ At B axx +Bp 5 -t Bi; (4.6)
90 9eS 3%, o oK) Brcuy
—<A16 ax A 3y +Ags 5~ + Bie ayx + By 3y + Bes 3y
_ AN, N L
ox oy
Following the same procedure, it can be shown that
N, ON,
Ty = —( i +'3y'" : (4.7)

where A; and B, are extension stiffness matrix and bending stiffness matrix, respec-

tively, defined as

N>

b 4

h
=h
2

A, = ?—k ~k
U = QU dz, Bl] = y4 QU dz. (4.8)

M|

From the first two of eq. (3.12) it can be seen that the conditions 7, = 0 and 7., =0 on
the top surface of the plate are satisfied. One indication of the lack of convergence

of the interlaminar stress calculations using numerical solutions is the lack of satis-
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faction of the redundant traction-free boundary condition at z=2y,,. This will be

discussed more shortly.

4.2 Comparison with Other Solutions

From eqs.(4.4) and (4.5) it can be seen that the expressions for interlaminar shear
stresses involve first-order derivatives of strains and curvatures. Since the strains
and curvatures are expressed as first-order derivatives of displacements and ro-
tations in shear deformation theory, the interlaminar shear stresses involve the
second-order derivatives of the displacements and rotations. If the solution for the
displacements and rotations is expressed in a functional form which varies contin-
uously in x and y, the second derivatives can be calculated exactly. However, the
finite-element solution is a descrete solution. Therefore, in order to obtain the second
derivatives of the displacements and rotations numerical derivatives have to be used.
The second derivative obtained numerically can be inaccurate. Thus, in order to ex-
amine the accuracy of interlaminar shear stress based on the finite-element method,
simple cases are studied where the exact solutions for interlaminar stresses can be
obtained in functional form. The numerical values from eq.(4-4) and eq. (4-5) based
on finite-element calculations are compared with exact solutions which utilize these
same equations but which can take advantage of closed-form expressions for the
derivatives. The first case compared is the comparison in the geometrically linear
range. The second case is a comparison in the geometrically nonlinear range of de-

flections.
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4.21 Simply Supported Cross-Ply Plate Under Uniform Loading.

The governing equation within the framework of linear classical lamination theory
for the out-of-plane deflection of a symmetric cross-ply laminate is
a'w 3w 0w
Dy, ot + 2(Dy + 2D¢s) W + Dy EyT =gq. (4.9)

When the four edges of the plate are simply supported, the solution for w can be ex-

pressed in the form

M N

W= Z Z Wonn cos( X )cos( did ), (4.10)

m=13n=13 L w

where L and W are the plate length in the x direction and plate width in the y direc-
tion, respectively, and the origin of the coordinate system is at the geometric center
of the plate. The W,., are the unknown coefficients to be solved as a function of the
applied load. From the governing equation and assumed solution form it can be ob-
served that if the transverse load is expanded into a double cosine series, the sol-
ution can be obtained easily. The transverse load can be expanded into a double

cosine series as

qg= i i Qmn cos( anx )cos( n;;y ) (4.11)

When q is a constant (uniform loading), the coefficients Q.. are obtained as
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16 m+n
Qun=—(—1)"2 *". 4.12)
mnn

Substituting the expanded form for q and assumed form for w into the governing

equation, eq (4.9), the expression for the unknown coefficients W, can be obtained

as

an

(B2 )"+ 200+ 20 () (50 ) + 0 55 )

Wnn =

169 TE0 44

2 (—1)

mnn

() +20u+ (52 (5 ) +0ul )

F

The solution developed here is exact as it satisfies all displacement and moment
boundary conditions. The only issue is using a sufficient number of terms in the se-

ries.

The midplane curvatures are obtained by the following equations :
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M N
kg = = axa =2 Z ; W 25 ) (55 ) sin( T )s"‘( W > (4.16)

For this problem the inplane displacements, and thus the midplane strains, are zero.
Substituting the above expressions into eqs. (4.4) and (4.5), interlaminar shear
stresses are obtained. For a square plate with 15 terms in m and n (M=15, N=15),
a sufficiently converged solution can be obtained. The stresses from this solution are
compared with those calculated by the finite-element method. In the finite-element
method the shape functions are used for the calculation of the curvatures and their
derivatives. Figure 4-2 shows the comparison between the series and finite-element
solutions at several locations within a [0/90]s plate. The variables appearing in Fig.

4-2 and the ensuing figures are defined as

- x  -_Y -_Z = Tz = Tyz

X = L [} Y— W [] zZ= h ) sz— q ] Tyz—' q . (4.17)
Sixteen elements for one-quarter of the plate (4 elements in the x direction and 4 el-
ements in the y direction) were used for the finite-element calculation. The
interlaminar shear stresses were compared at the centroid of each element. The

agreement between the exact and finite-element solution is very good.

4.2.2 Interlaminar Shear Stresses in Nonlinear Cylindrical Bending

In the postbuckling problem geometrically nonlinear effects are important and it is
not clear that conclusions obtained regarding the accuracy of the interlaminar

stresses for the geometrically linear problem can be applied. As in the previous
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Fig. -2 Comparison of interlaminar shear stresses between exact solution and FEM sofution
for a simply supported square [0/90]s plates under uniform loading.
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sections for geometrically linear problems, a geometrically nonlinear problem for
which there is a closed-form solution available, and for which interlaminar stresses
can be computed, should be used for checking the finite-element calculations. In the
course of this study, for the purpose of comparing interlaminar shear stresses, a ge-
ometrically nonlinear problem was posed and solved in closed form. Interlaminar
stresses calculated from this solution were compared with the stresses computed
using the finite-element approach for the same problem. The problem is essentially
the geometrically nonlinear analog of the cylindrical bending studied by Pagano [50].

To follow is the exact solution for the nonlinear cylindrical bending problem.

The governing equations for classical plate bending theory including geometric

nonlinearities are

oN oN
x Ty O (4.18)
N, N,
O°M,, azMxy az’My w Pw 3w

+2 + +N +2N, 2™ N +g=0, 4.20
ax? Oxdy ay? ¥ ox? ¥ dxdy Y oy? (4.20)

where N, N, and N,, are force resultants, M, M, and M,, are moment resultants,
w is the out-of-plane displacement of the plate’s reference surface, and q is the

transverse loading. The basic assumptions for cylindrical bending are

3
v=0, %y =0 (4.21)
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where v is the reference surface displacement in the y direction. With these as-

sumptions the above governing equations are simplified to

dN,
g 0 (4.22)
dzMx d’w
>+ N, > +ta= 0. (4.23)
dx ax

Equation (4.19) is not involved in the solution procedure. The terms of importance in

the constitutive equation for a symmetric laminate are expressed as

du 1, dw 2
Ny = Ayey = A11{W+?(W) } (4.24)
0 d2w
MX=D11KX=—D11_'2—. (425)
dx

As usual, u is the displacement in the x direction of the plate’s reference surface.
Due to the basic assumptions for cylindrical bending, eq. (4.21), & , y% , x} , and «j,
become zero. The boundary conditions studied are shown in Fig. 4-3. Note that the
location x=0 is at the plate’s midspan. The use of symmetry is employed in the ap-

plication of the boundary conditions and only one half of the plate is analyzed.

The above equations are nondimensionalized as
- X - u — W
X = u=- w=-. (4.26)

By substituting eq. (4.26) into eqs. (4.24) and (4.25), nondimensionalized equations for

N, and M, are obtained as
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Fig. 4-3 Boundary conditions for nonlinear cylindrical bending.
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— du , L 1, dw

— d*w

Mx =——— (428)
ax

where

— 12

N, = ——;Nx, (4.29)

— L2

M, = D, M,. (4.30)

By substituting eq. (4.26), (4.29), and (4.30) into eq. (4.23), a nondimensionalized

equation for eq. (4.23) is obtained as

257 2
i Ak o

dx’ Dy " gx? *9=0 (4.31)
where @ is given by
_ Lt
g= b.oh q. (4.32)

From eq. (4.22) it can be seen that N,, therefore N,, is a constant. This result that N,
is constant makes the problem quite simple. By substituting eq. (4.30) into eq. (4.31)

a fourth-order ordinary equation for w results, namely,

w2 dW - ,
o -« i =q, (4.33)
where
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Ayh?

(4.34)
Ds4

PR—
o =N,

and G can be a general function of X . For simplicity a uniform transverse loading
case is considered. By substituting the solution for w into eq. (4.27), U can be de-

termined. Considering that w is an even function of x , the solutions for U and w are

expressed as

_ sinh(2ax) ¥ x cosh(ax)  sinh(aX) o

U=ax — az{ e -2—} + 33{ m R —a, 5 (4.35)
W = C, cosh(aX) — — % + C,, (4.36)

2a
where
2 2
_h = _Ciath _GCih __h -
a =" Ny, ay= ofr B=G 0 A= o) q. (4.37)

In these equations ITI:, C,, and C, are unknown coefficients. The above solution satis-
fies the symmetry conditions at the center of the plate. Applying the boundary con-

ditions at the right end, the following three equations are derived :

a sinh(a) 4 COSh(%) sinh(%-) a,
?"32{—37‘—7}*’"3 TR G Thae (4.38)
x ]
C, cosh( 7) - .?f_ +C,=0, (4.39)
.ol q
10 cosh( ?) - ? =0. (4.40)
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In the above equations « is a function of N,. From eq. (4.37) a,, @, @, and a, are
therefore functions of N, and C, . In the above equations an expression for C, in terms
of N, can be obtained from eq. (4.40). Substitution of this expression for C, into eq.
(4.38) gives one nonlinear equation for N, as a function of the uniform load §. The
final equation is solved numerically for N, as a function of § , and C, and C, are de-

termined by back sustitution into egs. (4.39) and (4.40).

With the displacement response of the plate known, the strains and curvatures,
and their derivatives, can be used in egs. (4.4) and (4.5) and the interlaminar stresses
computed. The interlaminar shear stresses calculated by using the above exact sol-
ution were compared with finite-element calculations. A [0/90]s cross-ply laminate
with a load level of § = 1000 is studied. At this load level the maximum deflection at
the center of the plate is w = 1.80, i.e., the plate is deflected 1.80 times its thickness.
With the specific boundary conditions this deflection is in the geometrically nonlinear
range. With 2, 5, and 10 elements representing one half of a strip across the width
of the plate, the convergence of the finite-element solution is studied at the
centroidal and other Gauss points in the element at the supported edge. This ele-
ment is studied because the interlaminar shear stress is the highest at the supported
edge. Figure 4-4 shows the comparison of the finite-element solution and the exact
solution at the center Gauss point of the element. Even with 2 elements the shear
stress on the top surface is zero. As was shown earlier, in the exact sense this has
to be the case. However, with numerically obtained second derivatives there is no
guarantee that this will happen. Despite the shear stress returning to zero at the top
surface, with two elements there is a difference between the finite-element calcu-
‘lation and the exact solution for shear stress within the thickness of the laminate.

As the number of elements is increased the finite-element solution approaches the
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Fig. 44 Comparison of interlaminar shear stresses between exact solution and FEM solution
in nonlinear range at center Gauss point in end element for a [0/90]s laminate in

cylindrical bending, g =1000.
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exact solution. (Note that as the number of elements increases, the location X where
the comparison is taking place moves closer to the edge of the plate, X =0.50 , and

the shear stress actually increases. )

Figure 4-5 shows the convergence study at a Gauss point other than the center
Gauss point in the end element. Even with 10 elements the agreement is not good.
From this it can be seen that the convergence of interlaminar stress at the Gauss
point in the center of the element is better than at other Gauss points. Chaudhuri and

Seide discussed this in ref. 51.

Fig. 4-6 shows the comparison of the finite-element solution with the exact sol-
ution for a [ + 45/0/90],s laminate with a load level of § = 1000. In this comparison
D, and D are set to zero. At the load level of g = 1000, w at the center of the strip
was 1.58. With 10 elements representing the half-width of the plate, the agreement

at the centroid of the element at the supported edge is good.

4.3 Results for Plates with Holes

With the above examples it has been shown that the interlaminar shear stress
calculation scheme using the finite-element method can be accurate. Some
investigators[34, 36, 37] have mentioned that the interlaminar shear stresses along a
node line can be an important parametér for determining the failure of solid plates
which deform into more than one half-wave in the loading direction during

postbuckling. In this study specific interest centers on the interlaminar stresses in
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Fig. 45 Comparison of Interlaminar shear stresses between exact solution and FEM solution
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plates with holes loaded in a postbuckled range. In this section for the plates with
holes which have deformed into two half-waves in the loading direction, interlaminar
shear stresses will be studied. First, convergence of interlaminar stress calculations
as a function of the mesh refinement will be studied. Then, insight into the
interlaminar shear stress distribution on the midplane will be discussed. Finally,
through-the-thickness distributions of interlaminar shear stresses for each laminate
in this study will be presented. Shown in Fig. 4-7 are several regions of interest
within the plate, namely the net-section hole edge, half way between the hole edge
and simple support along the net-section, the region just inside the simple supports
on the net-section, and the portion of the plate extending beyond the simple supports

on the net-section.

For the convergence study of interlaminar shear stresses three levels of mesh
refinement are used. They are a 57 element, a 121 element, and a 209 element mesh
representing a quarter plate, as shown in Fig. 4-7. With a [ 4+ 45/0/90],s plate
interlaminar shear stresses on the elements along the net-section were studied for
the above three levels of mesh refinements. The load level (P/EA =0.00152) was se-
lected so that the maximum out-of-plane deflection of the plate was about two plate
thicknesses. As shown in Fig. 4-4 and Fig. 4-5, interlaminar shear stress calculations
with the present method are most accurate at the center of the element. Thus, cal-

culations are made at the centers of the elements.

One location of interest is the net-section hole edge, the region marked by the
double-crossed hatch in Fig. 4-7. The results from three mesh refinements for the
through-the-thickness distribution of 7, at the center of the element at the net-section

hole edge are shown in Fig. 4-8. In this figure t,, is normalized with respect to the
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Fig. 47 Finite-element meshes and reglons of interest used to study interlaminar stresses.
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equivalent Young’s modulus of the laminate in the x direction. This modulus is listed
in Table 2-4. In this comparison, since the centers of the elements at the net-section
hole edge for each mesh refinement do not coincide with each other, the stresses are
not computed at exactly the same point. However, some aspects of the stress calcu-
lations can be observed from this figure. As discussed with eqgs. (4.6)-(4.8), the re-
dundant traction free condition on the top surface in the derivation of eq. (4.4) and eq.
(4.5) must be satisfied. Figure 4-8 shows that this condition is satisfied at the net-
section hole edge with just 57 elements in the mesh. Also, it is clear that 7., calcu-
lated on the midplane with the 57 element mesh is quite different than ., calculated
with the 209 element mesh. As the mesh is refined, the observation point approaches
the net-section hole edge. With a small movement toward the hole edge 1. on the
midplane calculated with the 209 element mesh is about 4 times bigger than that
calculated with the 57 element mesh. This shows that 7,; at this region changes very
rapidly. Using only a small number of elements could result in missing this rapid

change of interlaminar shear stresses near the hole boundary.

As a next observation location, the region between the hole edge and the simple
support along the net-section was selected. The through-the-thickness distribution
of 1,, at this location is shown in Fig. 4-9 for each mesh refinement. This figure shows
that as the number of elements is increased, t,, on the top surface approaches zero.
Also, the figure shows that at this point 7, on the midplane is about one-third of the

value at the net-section hole edge.

One more location of interest is the extension region outside the simple support.
The element at this region is marked by dots in Fig. 4-7 and is labeled as the net-

section extension region. Through the thickness distribution of 7,, at this location is
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Fig. 49 Dependence of the distribution of v, through the thickness on mesh size for a
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Fig. 410 Dependence of the distribution of 1,, through the thickness on mesh size for a
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the simple support (Two half-waves in the loading direction).
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shown in Fig. 4-10. The value of 1, at this location is relatively small, and the sign is

opposite to the sign at the other two locations.

As a convergence test for t,, , the center of the element just inside the simple
support, a region marked by a single hatch in Fig. 4-7, was selected. The distribution
of 7,; in the thickness direction at this location is shown in Fig. 4-11. The 57 element
mesh shows poor convergence. As the number of elements is increased, the con-
vergence is improved as indicated by the shear stress going to zero at the top sur-
face. The value of 7, at this location is also relatively small compared to 7, at the

net-section hole edge.

From this convergence study, it is shown that the convergence of interlaminar
shear stresses is good at the locations where the interlaminar shear stresses are
large. The convergence is not good at the location where the shear stress is small.
However, the locations of interest for failure study are the areas where the stresses

are indeed large. Thus, with the above results, it can be expected that by using a 209

element mesh an accurate and realistic study of failure can be achieved.

in order to learn more about the interlaminar shear stresses within the plate, the
interlaminar shear stress on the geometric midplane is computed as a function of
location along several loci. In particular, the variation of 7, and 7,, along the centers
of the elements at the net-section and along the centers of the elements on the hole
boundary is examined. In Fig. 4-12 the variation of interlaminar shear stresses along
the centroids of the elements at the net-section is shown. The y coordinate of the
center of the elements is normalized by the plate width W, and the interlaminar shear

stresses are again normalized by the equivalent Young’s modulus of a [ 4 45/0/90].s
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Fig. 4-11 Dependence of the distribution of 1,, through the thickness on mesh size for a
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plate in the x direction. In Fig. 4-12 it is clearly shown that 7, increases very rapidly
as the hole boundary is approached, as discussed at the beginning of this section,
On the other hand, t,, is negligibly small. As expected, t,, is largest at the simple
support. In Fig. 4-13 the variation of interlaminar shear stresses along the centers
of the elements on the hole boundary is shown. The stresses are shown as a function
of 8, where 6 = 90° is the net-section location. It can be seen that up to 6 = 45° the
value of 7., is small, but for 8 > 45° 1, increases very rapidly and reaches its highest
value at net section hole edge. Along the hole boundary t,, has relatively small val-
ues compared to 1, at the net-section hole edge. The distribution of 7, around the

hole boundary is roughly symmetric with respect to 6 = 45° .

In Fig. 4-14 the through-the-thickness distribution of interlaminar shear stress
7. for the different laminates in this study is shown. The stress was calculated at the
net-section hole edge. The 209 element mesh was used in this calculation. Note that
the equivalent Young’s moduli used to normalize the stresses are different from plate
to plate. Also, the load levels are different from plate to plate. However, the load level
was selected so that it represents the postbuckliing range where the maximum out-
of-deflection is approximately two plate thicknesses. From Fig. 4-14 it can be ob-
served that 7., changes rapidly in the 0° and + 45° layers, and less rapidly in the 90°
layers. Each figure shows symmetry with respect to the midplane. In the [ £ 45/0]s
laminate the inner 12 layers have the same fiber orientation. In Fig. 4-14 (c) it can be
seen that the distribution of 7. in these grouped 0° layers results in almost a
parabolic distribution, as can be observed in an isotropic material. In Fig. 4-14 (d) the

distribution of 7 in the [ + 45] laminate does exhibit a parabolic shape.
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The through-the-thickness distribution of 1,, was observed at the center of the
element at the net-section simple support for the laminates in this study. Their dis-
tribution with thickness is shown in Fig. 4-15. in general t,; on the top surface is not
zero. This means that 7,, is not fully converged. However, the value of 1,, at this lo-
cation is an order of magnitude smaller than 7., at the net-section hole edge. It can
also be observed that the distribution of 7., is not symmetric about the midplane. In
keeping with the results of Fig. 4-14, it is seen that for the 0° layers 7,; does not vary
significantly with z. In terms of actual value of interlaminar shear stress, the
[ + 45/0.],s and [ £ 45/0s)s laminates experience the largest values of 7, and the
[ +45/0/90],s and [ + 45]s laminates experience about 25% less than these two
laminates. As regards interlaminar stress 7,, , the [ + 45/0/90],s , [ + 45/0.)s , and
[ + 45/0s] laminates experience the same level of 7,, and the [ + 45], laminate ex-

periences less.

With the stresses being computed and the calculations being validated, attention

turns to the prediction of failure using the stress calculation. This is the subject of the

next chapter.
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5.0 Numerical Failure Analysis

As has been frequently stated, the primary goal of this study is to predict failure.
The load level, the location, and the mode of the failure are of interest. The first step
in the analysis of failure requires an accurate determination of the stresses. The cal-
culations for the stresses have been discussed in the previous chapter. The second
step in a failure analysis is the selection of a failure criterion and the development
of failure scenarios using the stresses and the failure criterion. Here the maximum
stress failure criterion is used. This criterion is selected because it is easy to under-
stand and easy to use. Complicating data regarding failure due to stress interaction,
as is sometimes required in more complicated failure theories, such as the Tsai-Wu

criterion, are not needed.

Because of the numerical nature of this study the failure analysis in this study is
carried out layer-by-layer by examining the stresses at the centroid of each element.
Recall from the last chapter that the interlaminar stress calculations at the centroid
are more accurate than at other Gauss points. With the stresses in each element and

each layer computed, the following failure parameters are defined and calculated :
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a4 g4
R,=—,wheno; 20, or Ry =——,whenag, <0, (5.1)

Xt XC
o
R, = 22 when 0,20, or Ry=—>,whena, <0, (5.2)
Yt YC
|T12|
R., = ’ 5.3
12 312 ( )
|T13|
— ’ 5.4
g2 (5.4)
ITQ3|
=, (5.5)

In eqgs. (5.1)-(5.5) o, is the normal stress in the fiber direction, g, is the normal stress
transverse to the fiber direction in the plane of the layer, i.e., the 1-2 plane, 14, is the
shear stress in the 1-2 plane, 1y is the interlaminar shear stress in the 1-3 plane, and
1y is the interlaminar shear stress in the 2-3 plane. In addition, X, is the tensile
strength in the fiber direction, X. is the compression strength in the fiber direction,
Y, is the tension strength transverse to the fiber direction in the plane of the layer,
Y. is the compression strength transverse to the fiber direction in the plane of the
layer, and Sy; is the inplane shear strength. These strengths are defined in the mate-
rial coordinate system, i.e., the 1-2-3 coordinate system. Also, Sy, is the interlaminar
shear strength in the 1-3 plane, and Sy is the interlaminar shear strength in the 2-3
plane. The values of these strength parameters for AS4/3502 used in this study are
listed in Table 5-1. These values are taken from reference [53, 54]. Note that S;; and
S.; are assumed equal. This is a reasonable assumption. From the numerical analy-
sis formulated in earlier chapters the stresses are calculated in x-y-z coordinates.
These stresses are then transformed into the stresses in the material coordinate

system for failure analysis with the maximum stress criterion. The stress transfor-
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Table 5-1  Strengths of AS4/3502 used in this study.

Strength
Strength parameter (Ksi?t

tensile strength in fiber direction ( X;) 200
compressive strength in fiber direction ( X ) -200
tensile strength
transverse to fiber direction (Y1) 7
compressive strength
transverse to fiber direction (Yc) -35
shear strength in 1-2 or 1-3 plane (S, Si3) 9.4
shear strength in 2-3 plane ( S,;) 8

Numerical Failure Analysis

109



mation rule can be found in any book dealing with mechanics of composite materials,

as an example, in reference [55, 56]

The ratios Ry, R., Rz, Rys, and Ry are used as indicators of failure. When R, is
equal to 1.0, it is judged that fiber failure occurs due to normal stress in the fiber di-
rection. In this study it is called fiber failure. In the same fashion, when R; and Ry,
are equal to 1.0, it is called transverse failure and inplane shear failure, respectively.
There are three stress components that can contribute to fiber failure. They are gy,
o , and ow. Even though fiber failure can be enhanced by the stresses 6, and oy, fi-

ber failure in this study means the failure of a layer in the fiber direction due to .

To follow is a considerable amount of information regarding predictions of failure
in the plates. As mentioned in chapter 3, a plate loaded in the postbuckling range
can experience unexpected mode shape changes. For the laminates in this study
failure loads, failure modes, and failure locations are predicted for both the one half-
wave configuration and the two half-wave configuration. For plates with holes the
failure analysis results are presented in Table 5-2 for the one half-wave configuration
and Table 5-3 for the two half-wave configuration. For plates without holes, i.e., solid
plates, failure analysis results are presented in Table 5-4 for the one half-wave con-
figuration and Table 5-5 for the two half-wave configuration. The tables are based on
a first-ply failure analysis. In these tables the element number and the layer number
of the failed layer are given, where layer number is counted from the bottom concave
surface of the plate. The element numbering scheme can be found in Fig. 5-1 for the
plates with holes and Fig. 5-2 for the solid plates. Since the initial deflection due to
the imperfection is assumed to be in the positive z direction, the plate deflects furthur

in the positive z direction when loaded. Thus here the bottom surface is on the op-
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Table 5-2  Failure loads, failure modes, and failure locations for plates with holes for the one
half-wave configuration.

) Failure — P ) L e
Laminate mode Nx (ibsin) EA Failure location
element 197
.0025
Ry 1605 0 6 3-rd layer ( 0°)
lement 189
+ 45/0/90 R 1239 0.00197 €
[ £ 45/0/90].s 2 16-th layer(45° )
lement 197
R 0.00182 ©
12 1140 1-st layer (45°)
element 169
0.00217
R, 1989 2-nd layer (-45°)
1231 0.00134 element 205
[ £ 45/0,].s Ry ’ 14-th layer( 0°)
Rp | 1342 0.00146 element 197
1-st layer (457)
element 169
R1 2030 0.001 63 2_nd Iayer (_450)
element 205
47
[ £ 45/06].s Ro 12 0.00100 14-th layer ()
element 197
1613 0.00129
Ri2 0 1-st layer (45°)
. 1447 0.00592 element 129
1 2-nd layer (45°)
element 140
1132 00463
[ £ 45]s Rz 3 0 16-th layer (45°)
element 197
461
Rq2 6 0.00189 1-st layer (45°)

* Layer no. is counted from concave side.
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Table 5-3 Failure loads, failure modes, and failure locations for plates with holes for the two
half-wave configuration.

. Failure — P . L e
Laminate mode Nx (Ibfin) A Failure location
element 208
0.00244
Ry 1532 1-st layer (45°)
element 79
[+45/0/90)s | P2 f1es | 0.00186 16-th layer (45°)
lement 170
R 1536 €
12 0.00245 16.th layer (45°)
R 1892 0.00206 element 208
1 1-st layer (45°)
1232 0.00134 element 154
[ + 45/0;]s Ry ' 14-th layer ( 0°)
lement 170
R 1681 0.00183 e
12 16-th layer (45°)
element 208
R 1953 0.00156 _ .
1-stlayer (45°)
element 154
1318 0.00106
[ £ 45/0e]s R 14-th layer ( o°)
lement 208
1894 0.00152 ©
P12 3-rd layer ( 0°)
lement 207
1260 0.00515 €
R 1-st layer (45°)
lement 79
716 0.00293 e
[ £ 45]s Ry 16-th layer (45°)
631 0.00258 element 158
Ri2 1-st layer (45°)

* Layer no. is counted from concave side.
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Table 5-4 Failure loads, failure modes, and failure locations for solid plates for the one
hali-wave configuration.

' Failure | — P : i
Laminate ode Ny (Ibin) A Failure location
element 69
0.00280
Ry 1758 2-nd layer (.45°)
element 50
.0024
[ £ 45/0/90].s Ra 1544 0.00246 16-th layer (45°)
element 62
R 0.00273
12 1710 16-th layer (45°)
element 69
.0022
Ry 2060 0.00225 2-nd layer (-45°)
0.0016 element 48
Ry 1859 0.00203 element 73 ;
1-stlayer (45°)
element 68
.001
Ry 2076 0.00166 2-nd layer (-45°)
element 46
45/0 .00114
[ £ 45/0¢]s R, 1425 0.00 14-th layer ( 0°)
element 68
0.00154
Ri2 1919 0 3-rd layer ( 0°)
" 0.00590 element 60
Ry 1443 . 2-nd layer (.45°)
element 50
.00442
[+ 45)is Ro 1080 0 16-th layer (45°)
R 738 0.00302 element 73
12 1-st layer (45 )

* Layer no. is counted from concave side.
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Table 5-5 Failure loads, failure modes, and failure locations for solid plates for the two
half-wave configuration.

i Failure — P . .
Laminate mode Nx (Ibsin) EA Failure location
element 64
R4 1606 0.00256 1-st layer (450)
element 48
[ +45/0/90Ls | Re 1546 